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LETTER TO THE EDITOR 

Spontaneous symmetry breaking in spin glasses 

A P Young and S Jain 
Department of Mathematics, Imperial College, London SW7 2BZ, UK 

Received 2 February 1983 

Abstract. We discuss the effect of a small uniform symmetry breaking field on the 
Sherrington-Kirkpatrick spin glass model. Both q ( h )  = ((S,);), and q , ( h )  = 
N((S, )T(S , )T  -(S,S,)T), are given by scaling functions, fCh/h*) and g ( h / h * )  respectively, 
where h*= T/N’ ’Z .  We show that g ( x ) = x f ’ ( x )  so that in the symmetry broken 
situation (h /h*  + CO but h c< 1) we have f ( x )  -B q, the statistical mechanics order parameter, 
and g(x)  -P q,, = 0. The latter is in contrast to the conclusions of Young and Kirkpatrick 
based on numerical evidence for small samples. We discuss the reasons for this discrepancy. 

It is by now rather well established (Young and Kirkpatrick 1982, to be referred to 
as YK, Sompolinsky 1981, Young 1981, de Dominicis and Young 1983, Mackenzie 
and Young 1982, Toulouse 1982, Hertz 1982) that the Sherrington-Kirkpatrick (1975) 
model exhibits non-ergodic behaviour. One result is that many order parameters can 
be defined. Here we confine our attention to statistical mechanics averages, and the 
corresponding order parameter 

q =lim lim qN(h)  (1) 
h - 0  N-a3 

with 

qN(h)  = ((Si):), 

where h is the field, Si = k1 denotes the ith (i = 1 . . . N )  Ising spin, (. . ,)T denotes a 
statistical mechanics average for a given set of interactions Jij and (. . .), indicates an 
average over the Jii. We assume a symmetric distribution for the Jii of width N-’  so 
the transition occurs at temperature T,= 1 (with Boltzmann’s constant set equal to 
unity). The order of limits in (1) is important because for each size N there is a critical 
field h* (which vanishes as N + CO) such that for h << h* the thermal average gives 
zero because of time reversal symmetry, while for h >>h* the symmetry is broken and 
we have the possibility of a non-zero value. It has earlier been argued (YK) that 

(2) 

because the magnetisation of low energy states is of order N*”.  We shall consider 
only a uniform field, but (2) also applies (YK) to a completely random staggered field 
*h.  We shall not consider the possibility of complicated staggered fields conjugate 
to one of the minima in phase space (and which therefore depend on the J i j )  for which 
possibly h* - N - ’ .  We shall consider a large but finite system and investigate the 
regions h >h* and h < h* but always with h << 1. The symmetry breaking situation 

h * = 
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in (1) therefore corresponds to 

h / h * + c o ,  h<< 1. (3) 
The only dependence of qN(h)  on N will be through the N dependence of h*,  so we 
shall not indicate the N dependence explicitly from now on. 

Another quantity of interest is the uniform susceptibility x ( h ) ,  which is related to 
q ( h )  by the fluctuation-dissipation theorem: 

(4) TX ( h  1 = N-' E ((SiSj?T -(Si)T(Sj)T)J = 1 - q ( h )  -qij(h) 

qij(h) = N((Si)T(Sj)T -(SiSj)T)J (i #i) ( 5 )  

i,i 

where 

is the contribution from the off-diagonal terms. For a symmetric distribution of Jii 
and h strictly zero qii vanishes (e.g. Fischer 1976). However, YK pointed out that h 
strictly zero is different from the limits in (3) and argued on the basis of numerical 
results that qii is finite in the symmetry broken situation below T,. 

In this paper we investigate in more detail the behaviour of q ( h )  and q i j ( h )  for 
h - h * by a series expansion in powers of h / h  *. If we define 

q ( h )  = f ( h / h * ) ,  qij(h) = g ( h / h * ) ,  (6) 
then 

q = lim f ( x )  
x + a  

and, defining qij in a similar way, 

qij = ?\l g(x), 

then the claim of YK is that qii # 0 below T,. However, we show below that 

d x )  =xf'(x) (8) 
and since f ( x )  + constant as x + CO it follows that qij = 0. Later on we discuss why the 
conclusion of YK turns out to be incorrect. We also relate our results to the claim of 
Sompolinsky (1981) that 4 also vanishes. 

To proceed we note that 1 - q ( h )  = ((SiSi),)~, where ( ), denotes a cumulant (statis- 
tical mechanics) average. The uniform field couples to the total magnetisation 
M (= E L l  Si).  Hence if we expand 1 - q ( h )  as a series in powers of h then U , ,  the 
coefficient of h", is given by 

U, = ( l / n  !)((SiSiW/T)")c)J 

where the averages are for h strictly zero. Noting that coefficients of odd powers of 
h vanish we define 

P) 

f(x)= UnXZ" 
?I=' 

(9) 

and obtain 

U n = [ - 1 / (2 n ) ! ] ( h  * / T)'" (( SiSM2" )c),. (10) 
Next we pick out the dominant contribution to (lo),  i.e. those terms with the largest 
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number of independent summations over sites. Since each site must occur an even 
number of times for the average to be non-zero, we divide the 2n spins from the 
factor M2" into n pairs such that the spins of each pair refer to the same site. The 
summations give a factor of N",  so one finds 

(11) a 2 n  = (-1/2"n!)((S1S1S2S2.. . Sn+lSn+l)c), 

where we have used (2). 
The calculation of g ( x )  proceeds in a similar way. Defining 

m 

g ( x ) =  bnx2" 
n = l  

one finds 

6 ,  = [ - N / ( 2 n ) ! ] ( h * / T ) 2 n ( ( S i S ~ 2 n ) , ) ~  

where i #in In order to pair up the sites one of the 2n spins from the factor M2" has 
to be site i, another site i and the remaining 2n -2 divided into (n - 1) pairs. 
Consequently we obtain 

6 ,  = [-1/2"-'(n - l)!]((S1SIS2S2. . . Sn+lSn+~)c)l = 2na, (13) 

g ( x )  = x f ' ( x )  (8) 

so that 

which implies qij = 0 as discussed above. 
It is useful to evaluate explicitly the first term 

bi = -(((SlSlS2S2)T -(SiSl)T(SZS2)T -2(SiS2)%))~) = 2((SiS2);),. (14) 

then 

q'*'= 1-2TIU(T)I (16) 
(Bray and Moore 1980) where U ( T )  is the energy per spin. q"' is therefore certainly 
non-zero below Tc because there is compelling numerical evidence (Kirkpatrick and 
Sherrington 1978, Mackenzie and Young 1983) that U ( T )  deviates from its paramag- 
netic value of -1/2T below T,. We shall return to this point later on. It follows 
from (14) that 61 # 0, as was noted by YK. Hence g ( x )  + 0 both for x + 0 and x +CO 

but is finite for intermediate values of x .  This non-monotonic behaviour was not 
anticipated by YK. 

Higher-order terms in the expansions involve more complicated correlation 
functions. For instance, the coefficient of h4 is proportional to 
((slsZ),(s2s3)T(s3sl)T)I. Below Tc replica symmetry is broken (see e.g. Parisi 1980 
and references therein) and there is no simple relationship between the 'order para- 
meters' which appear in successive terms. However, we can obtain closed form 
expressions for f and g if we make a single order parameter ansatz, that is to say all 
order parameters are assumed to be powers of q, e.g. q'2' = q 2 ,  qt3' = q3 .  In this case 
one has 

(17) 
n + l  ((SlSlS2S2. . . Sn+lSrl+l)c)J = c n q  



L202 Letter to the Editor 

where cn is a numerical factor. Hence from (6), (9), (11) and (17) one obtains 

4 ( h )  = 4f(4 l''h/h *) (18) 

with 
m 

(19) 

Clearly for consistency we must have limx-rm f ( x )  = 1. We shall now obtain f ( x )  
explicitly and verify this. The factor of cn in (17) comes from expanding out the 
cumulant average, setting to zero an average of a product of an odd number of spins 
and setting to unity an average of an even product of spins. Hence cn is just the 2nth 
cumulant average of a single free spin, i.e. 

Cn 2n f ( x ) = -  1 -x . 
2"n! 

Let us therefore consider a set of free spins in fields hi and repeat the above calculation 
for ( ( s s ) c ) h  = 1 - q ( h )  where (. . . ) h  is an average over the distribution of the hi. One 
readily finds (incorporating temperature into h ) 

where (. . .), is for a single spin in zero field as in (20). Hence if we choose a Gaussian 
distribution for the hi,  so that ( h * " ) h  = x ' ~  (2n)! /(2"n !) wherex is the standard deviation, 
one obtains 4 ( h )  = f - ( x ) .  But q ( h )  is trivial for this single-site problem. Thus 

m 

f ( x )  = (2~x) - ' / '  exp(-y2/2x) tanh' y dy. 

Similarly for qii(h) we obtain with a single order parameter ansatz 

qij(h) =qg(q ' / * h / h  *) 

where 

g(x) =xfyx) .  (23) 

The functions f ( x )  and g(x) are plotted in figure 1. Notice that the sum f + g  (which 
determines x ( h )  and hence the magnetisation, see (4)) approaches its asymptotic value 
faster than f o r  g separately because the leading correction ( - l / x )  cancels in the sum. 

Next we discuss why YK incorrectly concluded that qij # 0. YK calculated x and q 
and noted that Tx # 1-4 ,  the discrepancy increasing as N increased. The difference 
must be made up by qii, see (41, which was therefore argued to be non-zero. However, 
YK did not evaluate q directly by applying a field and taking the limits in (3) because 
these limits cannot be simultaneously satisfied for a small system. Instead, YK argued 
that the effect of the uniform field could be represented by projecting out states with 
a positive magnetisation. Let us denote an average over this restricted ensemble by 
(. . .)k. It is instructive to consider the effect of a magnetic field on these restricted 
averages and we denote the corresponding value of ((Si)?>, by qL(h) (NB the prime 
does not indicate a derivative). YK assumed that the order of the limits h + 0 and 
N -j CO can be interchanged in qL(h ) ,  i.e. if 

q ' =  lim qk(h =0) 
N+w 
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Figure 1. The function f ( x )  is given by (22) and g ( x )  is related to f ( x )  by f (x)  = x f ’ ( x ) .  
The sum of the two functions is also plotted and is seen to approach its asymptotic value 
(of 1 )  faster than fix) or g7x)  separately approach their asymptotic values (of 1 and 0 
respectively). 

then according to YK 

q = q l .  (24) 

In view of our above calculation the assumption that the order of limits can be 
interchanged must be incorrect. We suggest that for a large system q ( h )  and q’(h)  
vary as shown in figure 2. YK calculated q’ for several small sizes and interpreted it 
as q whereas, in fact, all we can say is that 

9 ’ q l ’  (25) 
assuming that q’(h) is an increasing function of h which seems likely. If q is larger 
than that claimed by YK then the relation Tx = 1 -q can be satisfied and hence qij = 0. 
YK also noted that their results for q seemed to be incompatible with Parisi’s (1980) 
theory, but in view of the above discussion YK values for q are inaccurate, so this 
discrepancy is removed. 

Finally, we situate our results in the context of Sompolinsky’s (1981) prediction 
that 4 = 0. One way that q could be zero would be if all coefficients in the expansion 
were zero, which implies a zero value q(2) ,  q‘3’ etc (i.e. order parameters which are 
not required to be zero by symmetry in strictly zero field). However, as noted above 
q‘2’ is related to the energy by (16) and so we are certain that q‘2’>0 at low 
temperatures. Hence all coefficients cannot vanish. On the other hand, it seems 
unlikely that q could vanish at all temperatures if the coefficients in the expansion 
are finite. Our results are, however, quite consistent with the argument of de Dominicis 
and Young (1983) that, within the replica formalism, statistical mechanics expectation 
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Fipre2. Asketchof theexpectedvariationofq(h)andq(h’)foralargesample. Theposition 
of h*, defined by (2), is shown. 9 is defined by the value of q(h)  in the limit h/h* + CO (but 
h << 1). q’isdefinedbyq’(h = O)andclearlyq’<q. ThequantitycalculatedbyuKwasactually 
9’ rather than 9. 

values are obtained by averaging over all replicas. Within the Parisi (1980) scheme 
this gives 4 =j: q ( x )  dx, 4‘*’=j: q 2 ( x )  dx etc. For these replica averaged quantities 
and to lowest order in t (= 1 - T )  Parisi finds that a single order parameter description 
holds, with 4”’ = 4’ etc and 4 = t .  This just correspondito our equation (18) with q = t .  

Furthermore we have argued (equation (25 ) )  that 4’ provides a lower bound for 
4 and the data of YK indicate clearly that 4’ > 0. Additional results on larger samples 
using Monte Carlo simulation (Mackenzie and Young 1983) confirm this prediction. 

To conclude, we have shown that 4ii = 0, so Tx = 1-4, as h + 0. There are 
consequently no numerical results, to our knowledge, which conflict with Parisi’s 
theory (if the latter is correctly interpreted). 

One of us (SJ) would like to thank the SERC for a research studentship. 
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